(Extreme) Dynamics of (very) hot plasmas

Massimo Cappi

IASF-INAF, Sezione di Bologna

Dynamics (_v) not (only) kinematics (v)

Topic is accretion and ejection in/from AGNs (Sey & QSOs)

Collaborators: M. Dadina, , G. Ponti, G. Malaguti, G. Palumbo, P. Grandi

Outline - Framework

- 1) Accretion flows <---> Inflows
 - 1a) Fast variations of FeK <u>emission</u> with red and blue shifts

 <u>see Fabian & Reynolds's talks</u>
 - 1b) New cases for transient, redshifted absorption lines
- 2) Ejection flows <---> Outflows
- 2a) Warm absorbers
 2b) New cases for blueshifted <u>absorption</u> lines (massive outflows)
 - 3) Simulations: XMM-Newton (long exp.), ASTROE-II, XEUS
 - 4) Cosmological importance [see Hasinger, Brandt, Mushotzky & Arnaud's talks]

Accretion/inflows: Fek emission lines (i/i)

Complex & fast time variations!!

⇒ Probe innermost regions of accretion disk

XMM - NGC3516

Iwasawa et al., 2004 (astro-ph/0409293)

Ponti et al., 2004, A&A

Accretion/inflows: FeK resonant absorption lines (i/v)

Narrow/broad(?) redshifted absorption lines

Accretion/inflows: FeK resonant absorption lines (ii/v)

iv) 1 relativistic line with resonant absorption?

Accretion/inflows: FeK resonant absorption lines (iv/v)

Ejection/outflows: Warm absorbers (i/iii)

Many great details from Chandra/XMM gra-

⇒ Clear that warm absorbers located between BLR and NLR, and dynamically important Kaspi et al. '01; Netzer et al. '02; Georges et al. '03; Krongold et al. '03

⇒ Mostly multiple ionization & kinetic components: outflows with v~100-1000 km/s

Ejection/outflows: Warm absorbers (ii/iii)

WA variability on timescales 1000-10000s

Mason et al. 2003

Ponti et al., in prep.

Different phases in WA should respond differently:
e.g. with a range of response times in a radially segregated flow
Disentangling WA vs. soft disklines, as well as constraining

Ejection/outflows: Warm absorbers (iii/iii)

Best would be a combination of highest effective area (for variability student and highest energy resolution (to remove ambiguities due to line blending)

(thanks to Jelle Kaastra)

Ejection/outflows: Massive outflows (i/iii)

⇒ massive, high velocity and highly ionized outflows in several RQ AGNs/QSOs mass: comparable to Eddington accretion rate (~M/yr) velocity: at least ~0.1-0.2 c

Ejection/outflows: Massive outflows (ii/iii)

McKernan, Yaqoob & Reynolds 2004

Cast doubts on the AGN origin of high-velocity absorption gas...because consistent with local WHIGM (N.B.: PDS456 is along Gal. Plane)

Ejection/outflows: Massive outflows (iii/iii)

3 other cases certainly do not fit in the McKernan et al. relation 2 high-z BAL QSOs

Chartas, Brandt & Gallagher, 2003

N.B.: Would have been undetected at z=0...

Quasar wind model by Elvis 2000

Magnetic Tower by Kato et al. 2003 (see also Lynden-Bell 2003)

In my opinion...

Transient redshifted absorption lines (rel. inflows) and transi blueshifted absorption lines (rel. outflows) are naturally expect models involving blobby/winds ejections and downfalling of mat (e.g. aborted-jet by Ghisellini et al., 2004)

N.B:

- Plausible to have a transition to relativistic jets
- Seyferts do have (failed?) jets
- "Physical bias" against highest ionization in/outflowing gas, (detectable only with Fe)
- "Detection bias" against transient redshifted features
- "Observational bias" against highest-v blueshifted features (poor high-energy sensitivity...cut-off at ~7 keV)

Simulations: (i/v) ASTRO-E2

Mrk 509, Astro-E2 simulation 100 ks

High energy resolution to distinguish beetwen wind and blob(s) (line profile)

Simulations: (ii/v) XMM-Newton long

Mrk 509: XMM-Newton simulation ($F_x = 2 \times 10^{-11} \text{ cgs}$)

Highest throughput for time-resolved detections of abs. lines \Rightarrow real-time, extreme dynamics, i.e. inward and outward accelerations!? (line $\Delta v/\Delta t$)blob=test particle to test Kerr vs. Schwarzschild GR

Simulations: (iv/v) XEUS

Simulations: (iv/v) XEUS

PDS456: XEUS WFI + CdTe (100 ks exposure)

(Wfi: S/N=100; Cdte: S/N=10)

(Wfi: S/N=50; Cdte: S/N=10)

Edges at E \sim 7.1-9.0 keV (rest-frame) + v_{out} \sim 0.1-0.5c

⇒ E_{observed}~ 8-14 keV !!

(maybe the reason why never seen earlier, except for high-z sources)

High energies is a MUST HAVE to study relativistic outflows!!

Simulations: (v/v) XEUS

Power-law + single edge @ 10 keV

F(2-10)=10⁻¹¹ cgs
$$\Rightarrow \tau$$
 within few %, _(E)<

F(2-10)=
$$10^{-12}$$
 cgs $\Rightarrow \tau$ within 5-10%, _(E)

$$F(2-10)=10^{-13} cgs \Rightarrow \tau \text{ within } 20-30\%, _(E)\sim Eres.$$

⇒ Possible to constrain Nh, _, and v of outflow

and their variations on timescales of 1000-10000 s

Goal is to probe the flow dynamics (Δv) of innermost regions by means of detection and time-resolved spectroscopy of red- and blue-shifted <u>absorption</u> lines

Fiducial numbers:

We wish to follow abs. lines from, say, ~1 to ~10 Rs, with intervals of 1Rs

Let assume v~0.2c, then for

BH mass= 10^8 M \ Δ Time-scale ~ 5000 s

BH mass= 10⁶ M \ _Time-scale ~ 50 s

Scaling from Mrk509 and XMM, and assuming EW(Fe)=-100 eV \Rightarrow

Con-X(6000cm²)

XEUS(60000cm²)@

 $F(2-10)=2\times10^{-11}$ cgs (~ 15 sources)

1000s

100s

 $F(2-10)=2\times10^{-12}cgs (\sim 50 sources)$

10000s

 $F(2-10)=2\times10^{-13}$ cgs (~ 250 sources)

100000s

Readosneeded because most hobb H mass 107 M

Effective areas such as these will open up the area of X-ray "BAL" spectroscopy

Cosmology: BH-Gal. relation

Important not only for physics of jets/ejection, but also for feedback mechanism between SMBH and host galaxy

Magorrian et al. '98

Tremaine '02; Gebhardt '02...etc

 M_bh ~ $_^4$

(see e.g. King and Pounds '03, Crenshaw, Kraemer & George '03, ARA&A)

Cosmology: BH-Gal. relation

link maybe not so surprising

Seyfert 2 galaxy NGC5252 OIII ionization cones

X-ray ionization cones

Tadhunter & Tsvetanov, Nature, 1989

Camilla Boschieri, laurea thesis

Wilson & Tsvetanov, 1994

Cosmology: BH(AGN) - groups and clusters relation

Energy feedback from AGN or quasars needed to recover preheating in clusters, i.e. L-T relation?

Finally, interesting 3 also for analogy with blueshifted Fe features from outflows in SNae, XRBs, microquasars and GRBs !?

To be done for next meeting?...

Summary

Besides Fe X-ray emission lines, there is now evidence for Fe X-ray absorption lines in AGNs (both Sey and QSOs)

This topic still requires better measurements of intensity, energy and frequency/recurrency but has a great potential for the study of:

- i) innermost regions of accretion flows (blobs=test particles!?)
- ii) launching mechanisms/characteristics of outflows/jets (mechanical energy emerging from BH)

```
Important not only for (relativistic) physics but also for link with cosmology
The driving observational requirement for this topic is to have
+ analogies with other sources
the highest possible throughput between ~1-50 keV

1-6 keV mandatory for redshifted abs. lines
6-50 keV mandatory for blueshifted abs. lines
(↑ energy resolution is a plus, but really needed
only for low-v (thus low and ) plasmas like WAs)
```

Thanks for your attention

from accretion/INflows to ejection/OUTflows

v/c= 0 0.1 0.2 0.3 0.4

Magnetic Tower by Kato et al. 2003 (see also Lynden-Bell 2003)

